

How Far Are We? The Triumphs and Trials of Generative AI in Learning Software Engineering

Rudrajit Choudhuri , Dylan Liu, Igor Steinmacher, Marco Gerosa, Anita Sarma

Introduction

- Generative AI (genAI) is revolutionizing SE
- However, uncertainty exists in how these tools can be leveraged in education
- Conversational agents has been shown to be useful for students
- GenAl has also been explored in this context:
 - focused on solving introductory CS problems
 - focused on programming

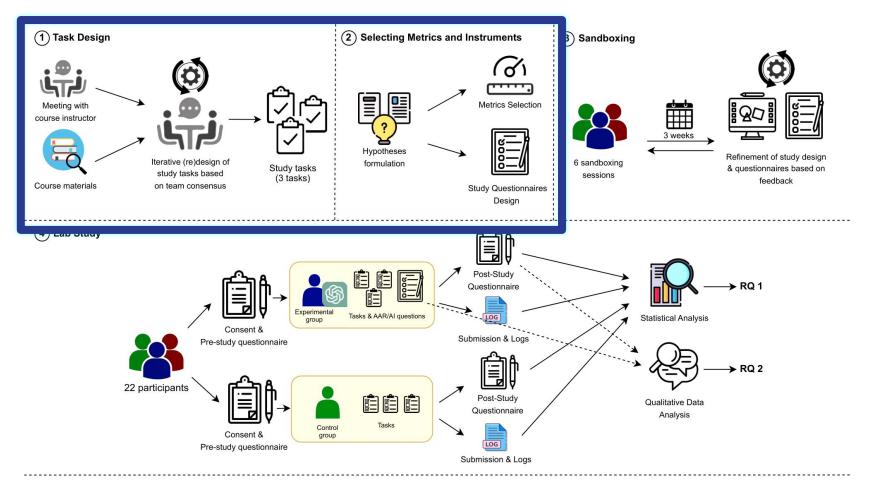
How can genAl tools be leveraged in supporting students in SE tasks?

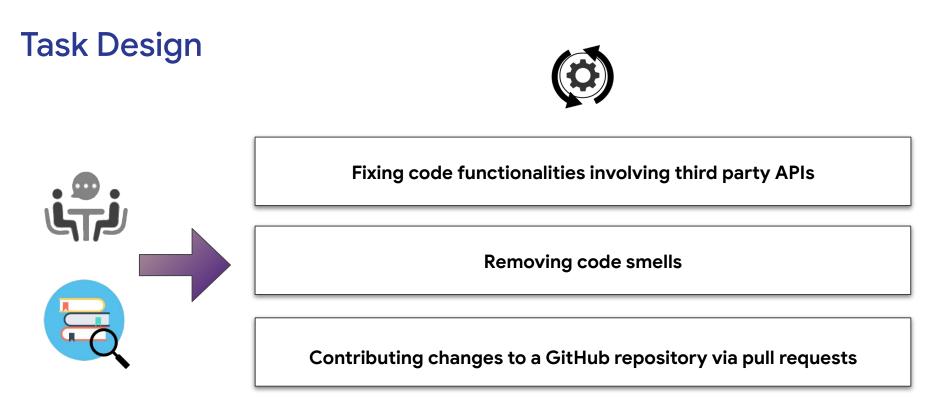
• that demand task-specific, contextualized assistance.

Research Questions (RQs)

RQ1

RQ2


How effective is genAl in helping students in SE tasks?


What are the current pitfalls in genAl in helping students with SE tasks?

Between-subjects study (N=22) with students enrolled in SE courses at our university

• Experimental: ChatGPT (GPT-4) vs. Control: Non-GenAl resources

Method

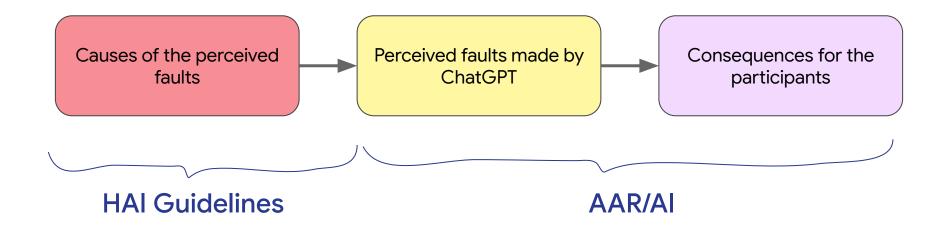
Iteratively designed and reviewed based on instructor's input

RQ1: Effectiveness in helping students with SE tasks?

Selecting Metrics and Instruments (RQ1)

	Construct	Metrics & Instruments	
	Cognitive Load	NASA TLX [1]	H1 : Participants using ChatGPT for the tasks perceive lower cognitive load than those using alternate resources.
	Productivity	Task Correctness & Time to Complete [2]	H2 : ChatGPT positively impacts participants' productivity.
	Self-efficacy	Self-efficacy questions [3]	H3 : ChatGPT promotes participants' self efficacy.
:	Continuance Intention	Direct likelihood questions [4]	Part of the post study questionnaire

Results (RQ1): Effectiveness (Cognitive Load)


	NASA TLX					
	Mental	Physical	Temporal	Performance	Effort	Frustration
Estimate	47	51.5	64.5	45.5	45.5	101
p-value	0.388	0.557	0.817	0.339	0.337	0.008***
Cliff's delta(δ)	-0.223	-0.149	0.066	-0.248	-0.248	0.669
Median values for each group						
Experimental	15	1	15	9	14	14
Control	14	3	15	12	14	9

Higher frustration levels among participants using ChatGPT.

"...it misinterpreted my questions, was REALLY slow, and didn't account for errors. It was hopeless (PT-7)"

H1 is not supported: Participants using ChatGPT did not perceive statistically significant lower cognitive load than those using alternate resources.

RQ2: Pitfalls in helping students with SE tasks?

Selecting Metrics and Instruments (RQ2)

After Action Review for AI (AAR/AI) (pronounced "arf-eye", short for AAR for AI)

- Standardized Al assessment process to help end users find Al faults [5]
- Recent member of the After-Action Review [6] family,
 - Devised by the U.S. military in the 1970s as a facilitated debriefing method
 - Used for decades and has been successfully adapted to different domains [7, 8]
- Integrating AAR/AI helps end users uncover significant number of faults with greater precision [5, 9]

Results (RQ2): Pitfalls (perceived AI faults)

F1: Limited advice on niche topics

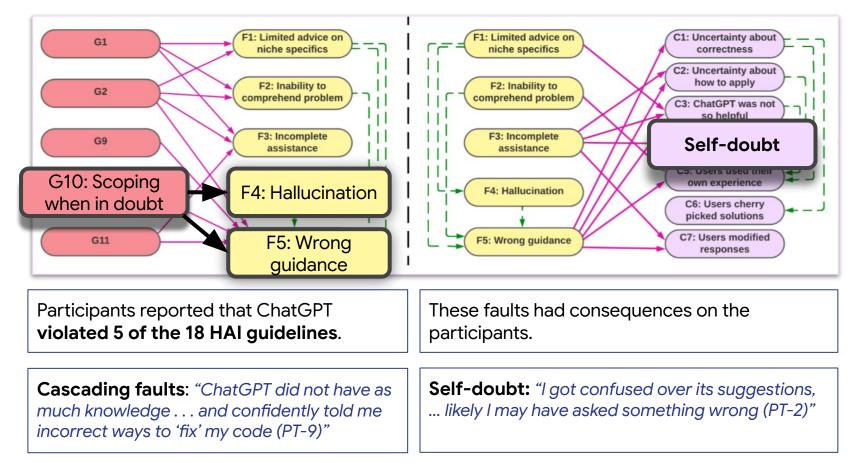
"for anything that wasn't super standard, ChatGPT struggled to easily give useful answers (PT-1)"

F2: Inability to comprehend the problem

"it identified non-problems as problems and missed actual ones and didn't do the thing I wanted it to do despite giving it context (PT-6)"

F3: Incomplete assistance

"...[ChatGPT] did not give me answers on how to solve the whole task (PT-11)".


F4: Hallucination

"made up parameters for functions that were unfamiliar (PT-4)"

F5: Wrong guidance

"It couldn't figure out test case 3 and kept telling me to check my drivers...without realizing there were missing imports (PT-8)".

Results (RQ2): Pitfalls (perceived AI faults, causes, consequences)

Conclusion

ontributing

 \bigcirc

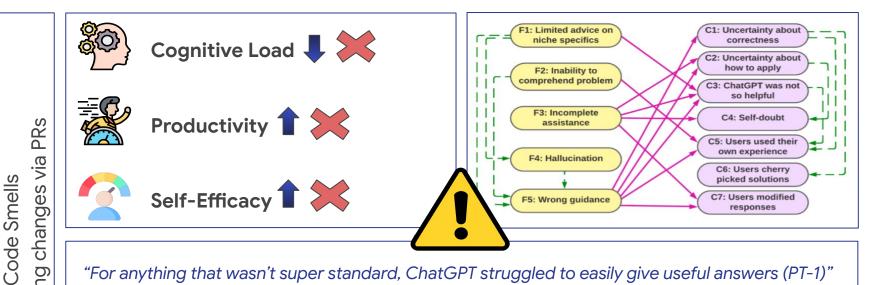
3

sk

Ta

Removing

ä


Task Task

S

Functionalitie

Code

Fixing

"For anything that wasn't super standard, ChatGPT struggled to easily give useful answers (PT-1)"

- Expert developers can navigate this, but novices might struggle or learn incorrect • practices.
- Necessary to : •
 - customize genAl with pedagogical scaffolds to support students Ο
 - follow iterative participatory approach in future genAl design Ο

paper!

Oregon State University

Thank You! Questions?

choudhru@oregonstate.edu

NSF

References

[1] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology. Vol. 52. Elsevier, 139–183

[2] Frank F Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE code generation from natural language: Promise and challenges. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2022), 1–47.

[3] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio Gerosa. 2016. Overcoming open source project entry barriers with a portal for newcomers. In Proceedings of the 38th International Conference on Software Engineering. 273–284.

[4] MY Park and KH Chung. 2011. The antecedents and consequences of user satisfaction in virtual community: Focused on college students. Korean Research Academy of Distribution and Management Review 14, 1 (2011), 77–99.

[5] Jonathan Dodge, Roli Khanna, Jed Irvine, Kin-Ho Lam, Theresa Mai, Zhengxian Lin, Nicholas Kiddle, Evan Newman, Andrew Anderson, Sai Raja, et al. 2021. After-action review for AI (AAR/AI). ACM Transactions on Interactive Intelligent Systems (TiiS) 11, 3-4 (2021), 1–35.

[6] John E Morrison and Larry L Meliza. 1999. Foundations of the after action review process. Technical Report. Institute for Defense Analyses Alexandria Va.

[7] Andrew W Ishak and Elizabeth A Williams. 2017. Slides in the tray: How fire crews enable members to borrow experiences. Small Group Research 48, 3 (2017),336–364.

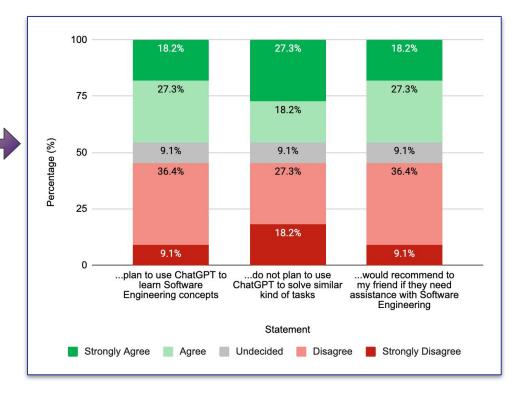
[8] Taylor Lee Sawyer and Shad Deering. 2013. Adaptation of the US Army's after action review for simulation debriefing in healthcare. Simulation in Healthcare 8, 6 (2013), 388–397

[9] Roli Khanna, Jonathan Dodge, Andrew Anderson, Rupika Dikkala, Jed Irvine, Zeyad Shureih, Kin-ho Lam, Caleb R Matthews, Zhengxian Lin, Minsuk Kahng, et al. 2022. Finding AI's faults with AAR/AI: An empirical study. ACM Transactions on Interactive Intelligent Systems (TiiS) 12, 1 (2022), 1–33.

Backup Slides

Table 2: AAR/AI steps and our adaptations. The Empirical context column explains how we realized the method in our study. Steps 3 to 6 were "inner loop" questions we repeated for all three tasks.

AAR/AI Steps	AAR/AI in our Empirical context				
1. Defining the rules: How are we going to do this eval- uation? What are the details regarding the situation?	We briefed the participants about the study details and how we were going to do the evaluation. Then we stated: "Yo will be given a questionnaire before and after each task. Please be detailed in your responses as that will help us evaluat ChatGPT's performance."				
2. Explaining the objectives of the AI agent: What is the AI's objective for this situation?	We oriented the participants about the primary objective of ChatGPT by stating, "The primary objective of ChatGPT will be to assist you by providing contextual, disambiguous, and correct information."				
Inner Loop					
3. Reviewing what was supposed to happen: What did the evaluator intend to happen?	We asked "What do you think should happen when you use ChatGPT for this task?" The participants chose between: will (provide (all/some))/(not provide any) useful information I need to complete the task.				
4. Identify what happened: What actually happened?	The participants did a task, then we asked "What actually happened when you used ChatGPT for this task?" The participants chose between: It (provided (all/some))/(did not provide any) useful information I need to complete the task.				
5. Examine why it happened: Why did things happen the way they did?	We asked "Why do you think ChatGPT behaved this way?"				
6. Formalize learning (end inner loop): What changes would you make in the decisions made by the AI to improve it?	We asked two questions: "To what extent did you modify ChatGPT's responses for solving the task?" The participants chose between: Did not modify at all/Modified (slightly/significantly). Then, we asked them to "Briefly explain why?"				
End Inner Loop					
7. Formalize learning: What went well, what did not go well, what could be done differently next time?	We asked three questions: "What went well?", "What did not go well?", "What could be done differently next time?"				


Source: https://www.microsoft.com/en-us/research/project/guidelines-for-human-ai-interaction/

Results (RQ1): Effectiveness

Polarized continuance intention: while one half of the participants intended to use genAl for SE, the others equally resisted:

"I would have liked to be able to ask someone knowledgeable in Python about [task 1] (PT-11)"

"I could not rely on [ChatGPT] to tell me when functions exist or not (PT-1)"

Results (RQ2): Pitfalls (AI faults, their causes & consequences)

F1: Limited advice on niche topics. ChatGPT struggled to provide advice on topics specific to a niche (e.g., a domain, a library, or a concept): "for anything that wasn't super standard, ChatGPT struggled to easily give useful answers (PT-1)"	F2: Inability to comprehend the problem. ChatGPT couldn't always comprehend participants' goals or problems. <i>"It identified non-problems as problems and missed actual problems"</i> and didn't <i>"do the thing you want it to do despite giving it context</i> <u>(PT-6)"</u>
F3: Incomplete assistance.	F4: Hallucination.
ChatGPT often provided incomplete/partially correct assistance even when it was able to grasp the problem <i>"it did not give me answers on how to solve the whole</i> task (PT-11)".	ChatGPT hallucinated, creating false answers when it didn't know the correct solution and <i>"made up parameters for functions that were unfamiliar'' (PT-4).</i>

F5: Wrong guidance.

In addition to hallucinating, there were other instances where ChatGPT gave wrong guidance, or "*incorrect ways to fix [problems] (PT-9)*". For example, when it could not comprehend the problem (F2), PT-8 was facing, it gave a piece of incorrect advice: "*It couldn't figure out test case 3 and kept telling me to check my drivers…without realizing there were missing imports (PT-8)*".